Parallel Learning:a Perspective and a FrameworkEnglish Full Text
Li Li;Yilun Lin;Nanning Zheng;Fei-Yue Wang;Department of Automation,TNList,Tsinghua University;IEEE;State Key Laboratory of Management and Control for Complex Systems,Institute of Automation,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of Artificial Intelligence and Robotics(IAIR),Xi’an Jiaotong University;Research Center for Computational Experiments and Parallel Systems Technology,National University of Defense Technology;
Abstract: The development of machine learning in complex system is hindered by two problems nowadays.The first problem is the inefficiency of exploration in state and action space,which leads to the data-hungry of some state-of-art data-driven algorithm.The second problem is the lack of a general theory which can be used to analyze and implement a complex learning system.In this paper,we proposed a general methods that can address both two issues.We combine the concepts of descriptive learning,predictive ... More
Keywords:
Descriptive learning; machine learning; parallel learning; parallel systems; predictive learning; prescriptive learning;
- Series:
(I) Electronic Technology & Information Science
- Subject:
Automation Technology
- Classification Code:
TP181
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- AI Summary
Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 101 Page: 389-395 Pagecount: 7 Size: 1760K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于Boosting的深度学习图像分类算法设计[J]. 王志强,王先传. 系统仿真技术. 2021(02)
- [2]Boosting算法理论与应用研究[J]. 张文生,于廷照. 中国科学技术大学学报. 2016(03)
- [3]Thickness Measurement of Insulation Coating by NIR Spectrometry Based on Boosting-KPLS[J]. HAO Hui-min1,2,LI Shi-wei3,ZHANG Wen-dong1,LI Peng-wei1,HAO Jun-yu2,LU Hai-ning2,Ken Jia4,ZHANG Yong51.Micro/Nano System Research Center,Taiyuan University of Technology,Taiyuan 030024,China 2.Automation Company of TISCO,Taiyuan 030003,China3.Northwest Institute of Nuclear Technology,Xi’an 710024,China4.Department of Research and Development,Brimrose Corporation of America,Baltimore 21152-9201,USA5.State Key Laboratory of Electrical Insulation for Power Equipment,Xi’an Jiaotong University,Xi’an 710049,Chin. 光谱学与光谱分析. 2011(08)
- [4]基于Boosting优先经验重放的协同计算卸载方法[J]. 黄毅,王文轩,崔允贺,陈意,郭春,申国伟. 计算机应用研究.
- [5]基于Boosting的支持向量机组合分类器[J]. 琚旭,王浩,姚宏亮. 合肥工业大学学报(自然科学版). 2006(10)
- [6]Memory-boosting RNN with dynamic graph for event-based action recognition[J]. CHEN Guanzhou,LIU Sheng,XU Jingting. Optoelectronics Letters. 2023(10)
- [7]Anomaly detection of control rod drive mechanism using long short-term memory-based autoencoder and extreme gradient boosting[J]. Jing Chen,Ze-Shi Liu,Hao Jiang,Xi-Ren Miao,Yong Xu. Nuclear Science and Techniques. 2022(10)
- [8]电力系统短期负荷预测的多神经网络Boosting集成模型[J]. 高琳,高峰,管晓宏,周佃民. 西安交通大学学报. 2004(10)
- [9]Boosting类算法比较研究——以线上优惠券回收情况预测为例[J]. 翟大昆,牟文龙. 软件. 2021(10)
- [10]集成学习:Boosting算法综述[J]. 于玲,吴铁军. 模式识别与人工智能. 2004(01)