介入诊疗螺旋血管机器人的数值研究

心脑血管疾病是一种严重影响人类健康的疾病,针对心脑血管疾病的治疗方法较多,定位精准、运行灵活的血管机器人自主式介入是治疗心血管疾病的一种重要手段。而血管机器人与人体环境的相互作用,会因其介入游动方式的不同,在人体内停留位置的不同,影响其在人体内的使用效果,所以开展血管机器人介入血管中对血流特征影响的研究非常重要,也是医工领域研究的热点和难点之一。在广州市属高校科研计划项目“血液多相流对喷流驱动血管机器人运动性能的影响机制”的支持下,本文基于流固耦合方法和血液两相流的研究成果,通过计算流体力学方法,对动边界条件下螺旋血管机器人介入血管后的血液动力学特征作深入地研究。具体而言,主要围绕三个方面开展研究:基于动态模拟方法对螺旋血管机器人进行数值模拟优化,以提高血管机器人在血管中游动的灵活性。数值结果表明:6线螺纹、螺升角为45°,β值为0.3的优化后模型其轴向推动力是优化前的4.69倍,而受到液体阻力矩仅是优化前的0.18倍。结合滑移网格方法与流固耦合方法,着重比较分析血管机器人介入弹性血管与刚性血管的动脉血液流场中血流动力学差距,为深入研究血管机器人以旋转运动的方式介入血液流场特征提供理论依据。数值结果表明:在一个心动周期中,弹性血管最大变形量为血管入口直径的2.4%,最大的血管壁剪切应力为7.95Pa;弹性血管壁模型的压力、速度变化范围比刚性壁模型的小,且速度流线较紊乱。血管机器人介入人本真实血管中,若将血液作为单相牛顿流体处理可能会使计算结果存在较大的误差;同时血管机器人的介入会与血液中体积较大的粒子发生碰撞,因此很有必要考虑大体积红细胞的存在对血流特性的影响,即是将血液视为血浆和红细胞固-液两相流。在这一假设的前提下,采用滑移网格、欧拉多相流数值方法,研究了血管机器人介入硬化、分叉、弯曲血管内固液两相流的流场特征,数值结果表明:介入三种不同血管中,血管机器人介入狭小的弯曲部位的血流特征最复杂,压力场和速度场均较其他两种情况的大;血管机器人的壁面剪切应力最大,但其红细胞的体积浓度为最小。研究中采用流固耦合分析技术和血液两相流手段对血管机器人介入血管内的血流动力学进行数值模拟,为未来血管机器人介入人体血管中对血液参数的检测和血管疾病的诊断治疗提供有价值的参考。

数值模拟; 血管机器人; 流固耦合; 两相流;

江帆;

TP242

2041059227K
在线咨询 用户反馈