Version after Accepted▼
(Accepted Version) Online First Publishing Date: 2024-01-19 12:33:07Online First Certificate Download
A Case Study on Susceptibility Assessment of Precipitation-induced Mass landslides Based on Optimal Random Forest Model, West Qinling MountainsChinese Full TextEnglish Full Text (MT)
LIU Shuai;WANG Tao;CAO Jiawen;LIU Jiamei;ZHANG Shuai;XIN Peng;
Abstract: Random forest model (RF) is one of the widely used machine learning models for landslide susceptibility assessment. Aiming at the difficult problems that restrict the application quality of random forest model assessment, taking more than 20,000 extreme rainfall landslides induced by extreme rainfall in Niangniangba Town, western Qinling Mountains as an example, the model optimization and comparison with conventional model evaluation were carried out mainly from four aspects: landslide-non-lands... More
- Series:
(A) Mathematics/ Physics/ Mechanics/ Astronomy; (C) Architecture/ Energy/ Traffic/ Electromechanics, etc; (I) Electronic Technology & Information Science
- Subject:
Geology; Industrial Current Technology and Equipment; Automation Technology
- Classification Code:
TP181;P642.22
CNKI exclusive online-first articles is prohibited to reprint and excerpt without permission.
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- BETABETAEnglish HTML (MT)
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 1218 Pagecount: 15 Size: 2103K
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于随机森林算法的泥石流地质灾害易发性评价——以西藏波密县为例[J]. 曹苏傲,陈佳乐. 河南科学. 2024(12)
- [2]基于优化随机森林模型的滑坡易发性评价[J]. 刘坚,李树林,陈涛. 武汉大学学报(信息科学版). 2018(07)
- [3]基于不同特征选择方法和随机森林法的滑坡易发性评价——以湖南中西部地区为例[J]. 段中满,贾亮亮,蒋明光,雷耀波,陈雅娜. 华南地震. 2023(02)
- [4]基于信息量-随机森林模型的滑坡易发性评价——以云南省双江县滑坡为例[J]. 何子军,刘惠军. 甘肃水利水电技术. 2024(09)
- [5]随机森林赋权层次分析法的崩塌易发性评价[J]. 石辉,邓念东,周阳. 科学技术与工程. 2021(25)
- [6]基于随机森林模型的乌江高陡岸坡滑坡地质灾害易发性评价[J]. 杨硕,李德营,严亮轩,黄元,王明哲. 安全与环境工程. 2021(04)
- [7]基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 孙德亮,陈丹璐,密长林,陈星宇,密士文,李晓琴. 地质力学学报. 2023(02)
- [8]基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 郭衍昊,窦杰,向子林,马豪,董傲男,罗万祺. 地质科技通报. 2024(03)
- [9]基于优化随机森林模型的藏东南地区滑坡主控因子分析及易发性评价[J]. 卫璐宁,郭永刚,周兴波. 地质与资源. 2025(01)
- [10]基于不同因子分级法的滑坡易发性评价——以湖北远安县为例[J]. 闫举生,谭建民. 中国地质灾害与防治学报. 2019(01)