Version after Accepted▼
(Accepted Version) Online First Publishing Date: 2023-09-06 14:03:28
Depthwise Separable Convolutional SAR Target Recognition Embedded in Attention MechanismChinese Full Text
LU Xiaohua;LI Aijun;
Abstract: The application of deep separable convolution makes the deep learning network model lightweight. On this basis, a depth separable convolutional SAR target recognition method embedded with attention mechanism is proposed. By combining the depth separable convolution with the attention mechanism, the ability of network learning the important target features is improved; At the same time, multiple depth separable convolutions are superposed and paralleled, and multi-scale network modules are design... More
Keywords:
synthetic aperture radar; target recognition; depthwise separable convolution; attention mechanism;
- Series:
(I) Electronic Technology & Information Science
- Subject:
Telecom Technology
- Classification Code:
TN957.52
CNKI exclusive online-first articles is prohibited to reprint and excerpt without permission.
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- AI Summary
Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 204 Pagecount: 10 Size: 1235K
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于深度卷积网络的SAR图像地物分类研究[J]. 孙盛,董晓冬,水文泽,刘立露. 计算机仿真. 2021(07)
- [2]基于极化分解和膨胀卷积的极化SAR地物分类[J]. 张泽宇,刘畅. 微电子学与计算机. 2020(12)
- [3]基于卷积神经网络与注意力机制的SAR图像飞机检测[J]. 李广帅,苏娟,李义红,李响. 系统工程与电子技术. 2021(11)
- [4]基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 张晓玲,张天文,师君,韦顺军. 雷达学报. 2019(06)
- [5]可变形卷积与注意力的SAR舰船检测轻量化模型[J]. 余光浩,陈润霖,徐金燕,徐前祥,王大寒,陈峰. 中国图象图形学报. 2025(03)
- [6]卷积调制的SAR雷达二维间歇采样转发干扰技术[J]. 房明星,王杰贵. 火力与指挥控制. 2014(07)
- [7]融入混合注意力的可变形空洞卷积近岸SAR小舰船检测[J]. 龚声蓉,徐少杰,周立凡,朱杰,钟珊. 中国图象图形学报. 2022(12)
- [8]基于卷积神经网络的SAR图像水体提取[J]. 陈坤,郝明,庄龙,谢聪. 电子测量技术. 2021(03)
- [9]卷积神经网络结合迁移学习的SAR目标识别[J]. 任硕良,索继东,佟禹. 电光与控制. 2020(10)
- [10]基于噪声卷积调制的SAR虚假信号生成新方法[J]. 黄大通,邢世其,刘业民,李永祯,肖顺平. 雷达学报. 2020(05)