Version after Accepted▼
(Accepted Version) Online First Publishing Date: 2023-04-14 11:17:56
An Improved Arithmetic Optimization Algorithm by Introducing Transition Stage and Gaussian MutationChinese Full TextEnglish Full Text (MT)
ZHANG Wei;LI Shi-gang;QI Ming-chu;ZHOU Xu-hu;SONG Yan;
Abstract: Aiming at the problems of low convergence precision and easy to fall into local optimum in the arithmetic optimization algorithm, an improved transitional Gaussian arithmetic optimization algorithm is proposed, which combines the new nonlinear transition stage with the improved Gaussian mutation strategy. First of all, in order to better transition from the high-dispersion strategy in the exploration stage to the low-dispersion strategy in the exploitation stage, a transition stage strategy is p... More
Keywords:
arithmetic optimization algorithm; transition stage; gaussian distribution; pressure vessel design;
- Series:
(I) Electronic Technology & Information Science
- Subject:
Automation Technology
- Classification Code:
TP18
CNKI exclusive online-first articles is prohibited to reprint and excerpt without permission.
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- BETABETAEnglish HTML (MT)
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 340 Pagecount: 12 Size: 1533K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于模拟退火高斯扰动的蝙蝠优化算法[J]. 贺兴时,丁文静,杨新社. 计算机应用研究. 2014(02)
- [2]基于逐维高斯变异的混沌麻雀优化算法[J]. 楚哲宇,唐秀英,谭庆,张清君. 自动化应用. 2021(08)
- [3]基于柯西-高斯变异的混沌蝙蝠算法[J]. 罗东,郭小雪. 信息与电脑(理论版). 2023(22)
- [4]一种引入过渡阶段和高斯变异的改进算术优化算法[J]. 张伟,李世港,齐明楚,周徐虎,宋燕. 小型微型计算机系统. 2024(07)
- [5]基于高斯扰动的反向蜉蝣优化算法[J]. 江佳玉,吴芸,童林,吴雪颜,吴霄. 宝鸡文理学院学报(自然科学版). 2023(01)
- [6]融入限制反向学习与柯西-高斯变异的蜣螂优化算法[J]. 杨志龙,邹德旋,李灿,邵莹莹,马乐杰. 计算机应用.
- [7]自适应t分布与动态边界策略改进的算术优化算法[J]. 郑婷婷,刘升,叶旭. 计算机应用研究. 2022(05)
- [8]一种多种群二进制算术优化算法及其应用[J]. 王若宾,耿芳东,王佳伟,徐琳,段建勇. 计算机应用研究. 2024(12)
- [9]混沌映射与精英高斯扰动的非线性灰狼优化算法[J]. 蔡娟. 计算机工程与设计. 2022(01)
- [10]基于高斯加权的GeesePSO改进算法[J]. 庄培显,戴声奎. 计算机科学. 2013(S1)