基于无人机航测数据的森林郁闭度和蓄积量估测

蓄积量是评价森林资源质量或状况的重要指标,为了解决实测郁闭度和蓄积量费时费力以及无法充分利用航测原始数据生成各项数据的问题,以无人机航测数据的点云数据和正射影像为研究数据,利用冠层高度模型提取高程,通过一元线性回归分析估测平均树高和平均胸径模型;使用改进形态学分水岭方法提取树冠个数;通过主成分回归建立郁闭度模型;结合提取与估测的GIS因子,用偏最小二乘法建立蓄积量模型。结果表明:平均树高模型精度为97.34%、平均胸径模型精度为91.27%,改进分水岭提取树冠精度为80.03%,郁闭度模型精度为83.18%,蓄积量模型精度可达88.43%。蓄积量模型的所有特征因子均是通过遥感方法从无人机原始航测数据中提取而来,充分利用了无人机航测数据。实验建立的树高、胸径和郁闭度模型可以有效地估测森林平均树高、胸径及郁闭度,改进后的分水岭算法减少了过分割,蓄积量模型能够有效估测蓄积量,提高了蓄积量提取效率,节省了大量的人力物力。

国家自然科学基金(31770768,31870530); 中央高校基本科研业务费专项资助基金E类(2572017EB09);

图像处理; 蓄积量; 偏最小二乘; 郁闭度; 分水岭算法; 无人机航测数据;

10.13360/j.issn.2096-1359.201904031

S758.51

18156-1638917K
在线咨询 用户反馈