在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。通过与动态时间规整算法和传统的矢量量化方法进行比较表明,在系统响应时间并未明显增加的基础上,该模型识别率有一定提高。

河北省教育厅博士基金资助项目(B2003202);

说话人识别; 线性预测倒谱系数; 美尔倒谱系数; 矢量量化; 动态时间规整;

TN912.34

688883-8853107K
在线咨询 用户反馈