Modelling for Power System Short-term Load Prediction Based on AWLS-SVM
ZHAO Chao;DAI Kun-cheng;School of Chemical Engineering, Fuzhou University;
Abstract: In order to eliminate the influence of unavoidable outliers in load data on model’s performance, a novel adaptive weighted least squares support vector machine(AWLS-SVM) for the power system short-term load forecasting(STLF) was proposed. Adaptive weight value for the training sample is determined according to the fitting error of each sample. Then, the particle swarm optimization(PSO) algorithm is applied to obtain the optimal parameters of the AWLS-SVM. To illustration the performance of the A... More
Keywords:
Conference Name:
第25届中国过程控制会议
Conference Time:
2014-08-09
Conference Place:
中国辽宁大连
- Series:
(C) Architecture/ Energy/ Traffic/ Electromechanics, etc; (I) Electronic Technology & Information Science
- Subject:
Electric Power Industry; Automation Technology
- Classification Code:
TM715;TP181
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 48 Page: 1584-1589 Pagecount: 6 Size: 319k
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于正态分布加权的最小二乘支持向量机[A]. 王莉莉,王玉兰,刘祖涵.Proceedings of 2010 International Conference on Management Science and Engineering (MSE 2010) (Volume 5)[C]. 2010
- [2]基于支持向量机核函数的智能辩识配电台区准确信息方法研究[A]. 蓝小武,佟强,黄欣琰,王亮.用电与能效专题讲座暨智能用电及能效管理技术研讨会论文集[C]. 2019
- [3]基于RVM和SVM的风速预测研究[A]. 伍敏,苏鹏宇,刘金福,于达仁.2012电站自动化信息化学术和技术交流会议论文集[C]. 2012
- [4]一种改进多类支持向量机加权后验概率重构策略[A]. 王晓红.2009中国控制与决策会议论文集(3)[C]. 2009
- [5]基于中心化支持向量机的信用风险评估模型[A]. 余乐安,姚潇.第六届(2011)中国管理学年会——商务智能分会场论文集[C]. 2011
- [6]基于支持向量机的系统辨识方法研究及应用[A]. 何琴淑,刘信恩,肖世富.中国力学大会——2013论文摘要集[C]. 2013
- [7]分布式多分类支持向量机[A]. 郭一楠,程健,肖大伟,杨梅.2011年中国智能自动化学术会议论文集(第一分册)[C]. 2011
- [8]一种新的支持向量机决策树及其应用[A]. 汪荣贵,孙见青,胡琼,李守毅.中国仪器仪表学会第九届青年学术会议论文集[C]. 2007
- [9]基于遗传算法和模拟退火算法并行优化支持向量机的武器装备费用估算[A]. 韩润繁,陈桂明,熊奇,高卫刚.第十二届设备全寿命周期费用技术大会论文集[C]. 2018
- [10]基于支持向量机的电动汽车行驶工况识别方法[A]. 李民策,王丽,李锡云,陈宗海.第21届中国系统仿真技术及其应用学术年会论文集(CCSSTA21st 2020)[C]. 2020