Efficient deep learning scheme with adaptive differential privacyChinese Full TextEnglish Full Text (MT)
WANG Yuhua;GAO Sheng;ZHU Jianming;HUANG Chen;School of Information, Central University of Finance and Economics;
Abstract: While deep learning has achieved a great success in many fields, it has also gradually exposed a series of serious privacy security issues.As a lightweight privacy protection technology, differential privacy makes the output insensitive to any data in the dataset by adding noise to the model, which is more suitable for the privacy protection of individual users in reality.Aiming at the problems of the dependence of iterations on the privacy budget, low data availability and slow model convergenc... More
- DOI:
10.19665/j.issn1001-2400.2023.04.006
- Series:
(I) Electronic Technology & Information Science
- Subject:
Computer Software and Application of Computer; Automation Technology
- Classification Code:
TP309;TP18
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- BETABETAEnglish HTML (MT)
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 327 Page: 54-64 Pagecount: 11 Size: 420K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于个性化差分隐私的联邦学习算法[J]. 尹春勇,屈锐. 计算机应用. 2023(04)
- [2]人们需要隐私公布[J]. 每周电脑报. 2005(22)
- [3]基于自适应差分隐私与客户选择优化的联邦学习方法[J]. 徐超,张淑芬,陈海田,彭璐璐,张帅华. 计算机应用. 2025(02)
- [4]加密一切 保护手机隐私[J]. 贺全荣. 电脑迷. 2012(09)
- [5]中国移动应用隐私政策研究[J]. 李泽睿,田宇琛,张伟哲,刘洋. 网络空间安全. 2020(06)
- [6]隐私政策在企业数据合规实践中的功能定位[J]. 李延舜. 江汉论坛. 2020(10)
- [7]美国促进数字隐私技术发展的举措及启示[J]. 王忠,梁力恒,谢卫红. 科技中国. 2022(07)
- [8]隐私数字化的道德风险与伦理规制[J]. 李志祥. 江苏社会科学. 2022(04)
- [9]美国隐私影响评估制度及其启示[J]. 梁乙凯,陈美. 情报资料工作. 2022(05)
- [10]隐私计算产业的发展及金融行业应用[J]. 胡浩. 银行家. 2023(03)