Research on Dummy Variable in Aboveground Biomass Models for SpruceChinese Full Text
YANG Ying;RAN Qixiang;CHEN Xinyun;OU Qiangxin;Academy of Forest Inventory and Planning,State Forestry Administration;Beijing Forestry University;Research Institute of Forest Resource Information Techniques,Chinese Academy of Forestry;
Abstract: Based on the biomass data of 150 spruce sampling trees,by using conventional regression methods and dummy variable modeling approach,one variable and two or three variables biomass models were established for the total aboveground biomass and the biomass of components for spruce in Heilongjiang and Jilin provinces. The results showed that the total aboveground biomass models had the highest prediction accuracy( 96% or more) and the leaf biomass models had the lowest prediction accuracy which sti... More
- DOI:
10.13466/j.cnki.lyzygl.2015.06.014
- Series:
(D) Agriculture
- Subject:
Forestry
- Classification Code:
S791.18
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 156 Page: 71-76 Pagecount: 6 Size: 140K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]基于哑变量的湿地松树皮厚度模型研究[J]. 吴宏炜,黄光灿,张伟志,严铭海,庄崇洋,江希钿. 森林与环境学报. 2020(01)
- [2]哑变量在森林蓄积量模型估测中的应用[J]. 岳振兴,岳彩荣,邹会敏. 中南林业科技大学学报. 2020(07)
- [3]云南松地上生物量模型研究[J]. 冉啟香,邓华锋,黄国胜,王雪军,陈振雄. 浙江农林大学学报. 2016(04)
- [4]用哑变量方法构建东北落叶松和栎类分段地上生物量模型[J]. 郑冬梅,曾伟生. 北京林业大学学报. 2013(06)
- [5]全林蓄积模型的研究[J]. 李希菲,王明亮. 林业科学研究. 2001(03)
- [6]金沟岭林场天然云冷杉林冠幅模型和估计方法比较[J]. 周泽宇,符利勇,张晓红,张会儒,雷相东. 北京林业大学学报. 2021(08)
- [7]林隙(Gap)模型研究进展[J]. 于振良,赵士洞. 生态学杂志. 1997(02)
- [8]ArcGIS模型工具在林业规划设计中的应用[J]. 李海涛. 绿色科技. 2019(21)
- [9]秦皇岛市沿海地区刺槐立木生物量模型研究[J]. 文嘉禄,张春雪,穆立蔷,赵忠宝,马鹤丹. 西北林学院学报.
- [10]基于空间广义加性模型的黑龙江省林火发生预测[J]. 李春辉,欧阳逸云,何燕,倪荣雨,曾爱聪,苏漳文,郭福涛. 生态学报. 2025(08)