Intelligent recognition and quantitative analysis of borehole hydraulic geological images utilizing multiple deep learning modelsChinese Full TextEnglish Full Text (MT)
Zhang Ye;Chen Jinqiao;Li Yanlong;State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi′an University of Technology;
deep learning; Attention mechanism; Unet; image thinning; fracture quantitative analysis; borehole; intelligent recognition;
- DOI:
10.19509/j.cnki.dzkq.tb20220091
- Series:
(A) Mathematics/ Physics/ Mechanics/ Astronomy; (C) Architecture/ Energy/ Traffic/ Electromechanics, etc; (I) Electronic Technology & Information Science
- Subject:
Hydraulic and Hydropower Engineering; Computer Software and Application of Computer
- Classification Code:
TP391.41;TV221.2
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- BETABETAEnglish HTML (MT)
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Download: 254 Page: 31-41 Pagecount: 11 Size: 2246K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]智能识别新体验让生活更美好[J]. 李健. 电子产品世界. 2009(08)
- [2]北方草地植物物种智能识别模型构建及应用[J]. 宣晶,付其迪,谢淦,薛凯,雒海瑞,魏泽,赵明月,智亮,万华伟,高吉喜,李敏. 植物学报. 2025(01)
- [3]基于激光传感器的路径智能识别研究[J]. 耿文波,张鸿辉,程全. 激光杂志. 2015(09)
- [4]足球弧线球运动轨迹智能识别系统的设计与实现[J]. 余跃. 信息与电脑(理论版). 2020(22)
- [5]基于RFID二次认证加密的智能识别系统设计[J]. 臧俊斌,白洋. 电子技术应用. 2021(06)
- [6]基于深度学习的黄花病株智能识别系统的开发[J]. 张叶娥,侯怡婧,杨航. 电子技术与软件工程. 2022(02)
- [7]苹果树病虫害智能识别系统设计与实现[J]. 杨勇. 农业工程技术. 2022(09)
- [8]深度学习在农业病虫害智能识别方面的研究进展[J]. 宋仕月,陈政羽,郑一凡,徐梓航,潘铖. 智慧农业导刊. 2023(04)
- [9]基于微信小程序的茶叶病虫害智能识别应用平台[J]. 吴鹏. 信息与电脑(理论版). 2022(23)
- [10]基于深度学习理论的电子商务商品实体智能识别[J]. 屈晶. 自动化技术与应用. 2024(03)