ChemRB: a novel generative model based on bidirectional molecular ring constraintsChinese Full TextEnglish Full Text (MT)
WANG Qingyong;TANG Lianggui;WANG Zhenyu;GU Lichuan;School of Information and Artificial Intelligence, Anhui Agricultural University;Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University;Anhui Provincial Engineering Research Center for Agricultural Information Perception and Intelligent Computing, Anhui Agricultural University;Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University;
Abstract: In the early stages of drug discovery, deep generative models are emerging as crucial tools for molecular design. The simplified molecular input line entry system(SMILES) serves as a standard chemical representation widely used for model training and generation. However, due to the non-uniqueness and non-directionality of linear representations of molecular ring systems, existing unidirectional encoders face limitations in capturing the global semantic structure of samples and generating valid m... More
- DOI:
10.15983/j.cnki.jsnu.2025005
- Series:
(A) Mathematics/ Physics/ Mechanics/ Astronomy; (E) Medicine & Public Health; (I) Electronic Technology & Information Science
- Subject:
Pharmaceutics; Automation Technology
- Classification Code:
R9;TP18
- Mobile Reading
Read on your phone instantly
Step 1
Scan QR Codes
"Mobile CNKI-CNKI Express" App
Step 2
Open“CNKI Express”
and click the scan icon in the upper left corner of the homepage.
Step 3
Scan QR Codes
Read this article on your phone.
- Download
- Online Reading
- BETABETAEnglish HTML (MT)
- AI Summary

Download the mobile appuse the app to scan this coderead the article.
Tips: Please download CAJViewer to view CAJ format full text.
Download: 107 Page: 45-59 Pagecount: 15 Size: 3152K
Citation Network
Related Literature
- Similar Article
- Reader Recommendation
- Associated Author
- [1]一种融合知识点信息的几何题自动求解方法[J]. 曹杰,肖菁,曹阳. 中文信息学报. 2023(10)
- [2]面向深度学习训练任务的自适应任务分配方法[J]. 陈伟,陈庆奎. 小型微型计算机系统. 2019(12)
- [3]基于多样真实任务生成的鲁棒小样本分类方法[J]. 刘鑫,景丽萍,于剑. 软件学报. 2024(04)
- [4]基于情绪感知的机器人辅助主动康复训练任务控制方法[J]. 徐国政,宋爱国,高翔,陈盛,徐宝国. 机器人. 2018(04)
- [5]OBE-BOPPPS线上线下混合教学法在传感器与检测技术课程中的应用[J]. 李小敏,赵艳丽. 现代信息科技. 2023(05)
- [6]无人机搭载导引头在试验训练中的应用研究[J]. 徐海. 飞航导弹. 2017(05)
- [7]A simplified adaptive interval Type-2 fuzzy control in practical industrial application[J]. 周海波,段吉安,周振宇. Journal of Central South University. 2014(07)
- [8]基于分布式缓存加速容器化深度学习的优化方法[J]. 张凯,车漾. 大数据. 2021(05)
- [9]基于元学习的变电设备小样本缺陷图像检测[J]. 仲林林,吴奇,叶俊杰,高丙团. 仪器仪表学报. 2024(10)
- [10]A simplified LC-MS/MS method for the quantification of the cardiovascular disease biomarker trimethylamine-N-oxide and its precursors[J]. Katharina Rox,Silke Rath,Dietmar H.Pieper,Marius Vital,Mark Br?nstrup. Journal of Pharmaceutical Analysis. 2021(04)